BEST PROXIMITY THEOREM FOR GENERALIZED (θ,γ)-PROXIMAL CONTRACTION MAPPING IN RECTANGULAR QUASI B- METRIC SPACE
dc.contributor.author | KASAHUN BEYENE BEJIGA | |
dc.date.accessioned | 2025-06-17T07:42:10Z | |
dc.date.issued | 2025-06-10 | |
dc.description.abstract | This paper explores best proximity point theorems whit in the framework of broad (θ,γ) proximal reduction “mappings in rectangular quasi b-metric spaces”. “We introduce the class of rectangular quasi b- metric” space as a broadening of rectangular metric space, “rectangular quasi” b-metric space, “rectangular b-metric” space,define broad (θ,γ)proximal reduction mappings. Establish situation under which a optimal proximity point exists and provide example to clear my results. Extend previous work on fixed point theorems and contribute to the theory of proximity points in non-standard metric spaces. | |
dc.description.sponsorship | wolkite university | |
dc.identifier.uri | https://rps.wku.edu.et/handle/123456789/46241 | |
dc.language.iso | en | |
dc.publisher | WOLKITE UNIVERSITY | |
dc.subject | Best proximity point | |
dc.subject | Optimal approximate solution | |
dc.subject | rectangular semi b-metric. | |
dc.title | BEST PROXIMITY THEOREM FOR GENERALIZED (θ,γ)-PROXIMAL CONTRACTION MAPPING IN RECTANGULAR QUASI B- METRIC SPACE | |
dc.type | Thesis |